

Usage instructions:

1. Launch the product via 1-click. Please wait until the instance passes all status checks
and is running. You can connect using your Amazon private key and 'ubuntu' login via your
SSH client.

To update software, use: sudo apt-get update

2. This AMI has been preconfigured with Gunicorn & NGINX a reverse proxy.

3. Let’s test the code. Change directories and edit the python script located here:

cd My-Flask-Application

sudo nano app.py

• Change the text to something new…. For example….

4. Save & Exit

5. Restart Flask app.

sudo systemctl restart my-flask-app

• If you need to check status run

sudo systemctl status my-flask-app

6. Next, configure the Nginx Poxy to your Instance Public IP Address.

 cd My-Flask-Application

sudo nano /etc/nginx/sites-available/my-flask-app

• Change the server_name to your Instance IP public address or domain name.

• Exit & Save

7. Restart Nginx. Run:

sudo systemctl restart nginx

8. Be sure to change the permissions

sudo chmod 755 /home/ubuntu

9. In a browser go to your: http:// Public IPv4 address

You should see:
“Hello, World! Here is my test” or the new edited script you added

To Run in a virtual Environment (optional)

8. If you prefer to run it in a virtual environment, run:

cd My-Flask-Application

export FLASK_APP=app

export FLASK_ENV=development

flask run --host=0.0.0.0

In a browser go to your: http:// Public IPv4 address:5000

• For ex: http://54.237.115.92:5000

• (Press CTRL+C to quit)

Visit the flask website to start building: https://flask.palletsprojects.com/en/1.1.x/quickstart/

AWS Data

• Data Encryption Configuration: This solution does not encrypt data within the running
instance.

• User Credentials are stored: /root/.ssh/authorized_keys &
/home/ubuntu/.ssh/authorized_keys

• Monitor the health:

o Navigate to your Amazon EC2 console and verify that you're in the correct
region.

o Choose Instance and select your launched instance.

o Select the server to display your metadata page and choose the Status checks
tab at the bottom of the page to review if your status checks passed or failed.

Extra Information: (Optional)

Allocate Elastic IP

To ensure that your instance keeps its IP during restarts that might happen, configure an
Elastic IP. From the EC2 console:

1. Select ELASTIC IPs.
2. Click on the ALLOCATE ELASTIC IP ADDRESS.
3. Select the default (Amazon pool of IPv4 addresses) and click on ALLOCATE.
4. From the ACTIONS pull down, select ASSOCIATE ELASTIC IP ADDRESS.
5. In the box that comes up, note down the Elastic IP Address, which will be needed when

you configure your DNS.
6. In the search box under INSTANCE, click and find your INSTANCE ID and then

click ASSOCIATE.
7. Your instance now has an elastic IP associated with it.
8. For additional help: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-

ip-addresses-eip.html

Using Your Own Domain Name

1. You will need to configure your DNS entry for the new host server you created.
2. Change your domain’s “Record Set” value to point to your new instance. Change and

copy your “IPv4 Public IP” into the “A” type value.
3. For additional help:

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html

Deploy a Load Balancer

1. https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/load-balancer-
getting-started.html

Deploy a SSL for a Domain Name (Optional but Recommended)

1. Installing Cerbot:

sudo apt install certbot python3-certbot-nginx

2. Obtain an SSL certificate and automatically configure Nginx:

sudo certbot –nginx

3. Follow the on-screen instructions. Certbot will modify your Nginx configuration
automatically to serve your Flask app over HTTPS.

https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/load-balancer-getting-started.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/load-balancer-getting-started.html

